Benchmark tests and spin adaptation for the particle-particle random phase approximation

Yang Yang,¹ Helen van Aggelen,¹,2,a) Stephan N. Steinmann,¹ Degao Peng,¹ and Weitao Yang³,b)

¹Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
²Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent, Belgium
³Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA

(Received 1 September 2013; accepted 19 October 2013; published online 7 November 2013)

The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal \(O(N^6) \) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, D16/04, and W19/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828728]

I. INTRODUCTION

The random phase approximation (RPA)¹ has attracted increasing interests within the quantum chemistry community during the last decade in its formulation as a density functional approximation.²–⁴ The RPA has its roots in many-body theories such as Green’s function theory⁵,⁶ or the coupled cluster theory.⁷,⁸ In density functional theory (DFT), the RPA represents a sophisticated functional, obtained when coupling the adiabatic connection⁹,¹⁰ with the fluctuation dissipation theorem.¹¹ Therefore, the RPA forms a connection between DFT and many-body methods. It is attractive for its lower computational cost (\(O(N^4) \) with resolution of identity¹²,¹³) compared to most correlated wave function methods, and because it overcomes some failures persistent in commonly used density functional approximations, i.e., the long-range dispersion interaction error¹⁴,¹⁵ and the static correlation error.¹⁶,¹⁷

Previously, the term “RPA” mainly referred to the well-known particle-hole channel of the random phase approximation (ph-RPA),²⁴,¹⁸,¹⁹ in particular to the direct ph-RPA which has no exchange. In the rest of the paper, we will simply denote the direct ph-RPA as ph-RPA. Recently, the particle-particle counterpart—the particle-particle random phase approximation (pp-RPA)—has been introduced to calculate the correlation energy of atomic and molecular systems.²⁰ By coupling the adiabatic connection with the pairing matrix fluctuation, the pp-RPA provides an approximate correlation energy.²⁰ The difference between ph-RPA and pp-RPA can also be viewed from a diagrammatic perspective, which identifies the ph- and the pp-RPA as the sum of all “ring” diagrams and all “ladder” diagrams, respectively.⁶ (Figure 1). As the summation of all ladder diagrams, the pp-RPA is equivalent to the ladder channel of coupled cluster doubles (ladder-CCD).⁷,²¹,²²

The pp-RPA has many interesting features, most notably, in contrast to ph-RPA,¹⁷ it has virtually no delocalization error for general systems, in addition to virtually no static correlation error for single-bond systems. It thus satisfies the flatplane condition.²³,²⁴ This suggests that the pp-RPA can be a source of inspiration for developing density functionals. The adiabatic connection formulated in previous work²⁰ demonstrates that the pp-RPA may be a starting point for constructing density functionals based on the pairing matrix fluctuation. Preliminary assessments have shown that the pp-RPA is at least as accurate as ph-RPA for calculating enthalpies of formation and van der Waals interactions.²⁰ Hesselmann²⁵ has noted that a third order correction to the ph-RPA, i.e., including ladder diagrams leads to significant improvements for molecular systems. In order to better gauge the performance of the pp-RPA, more benchmark tests are required.

a)Electronic mail: Helen.VanAggelen@UGent.be
b)Electronic mail: Weitao.Yang@duke.edu
In this paper, we first derive the spin separation and the spin adaptation for the pp-RPA to alleviate the computational burden. Then, we carry out benchmark tests to assess the performance of pp-RPA compared to the well-known ph-RPA. These benchmarks include the Gaussian-2/97 (G2/97) enthalpies of formation database, the DBH24 reaction barrier database, the HB6/04, CT7/04, DI6/04, and WI9/04 nonbonded interaction databases.

II. THEORY

A standard way of deriving the pp-RPA is from the adiabatic connection in terms of the pairing matrix fluctuation. It enables us to adopt DFT references and gives explicitly the correlation energy expression. However, when a Hartree-Fock (HF) reference is used, we can derive the same formula using the equation of motion (EOM) method, and in this paper, we will follow the EOM approach. Compared with the adiabatic connection formalism, the EOM method is easier for expressing spin separation and spin adaptation.

The EOM for the pp-RPA can be written as

$$[\delta O, [H, O^\dagger]] = (E_n^{N+2} - E_0^N - 2\nu)[\delta O, O^\dagger],$$

where \hat{H} is the Hamiltonian operator with the chemical potential taken into consideration,

$$\hat{H} = \hat{h} + \hat{V} - \nu \hat{N} = \sum_{pq\sigma\tau} \langle p|\hat{h} - \nu \hat{N}|q\rangle p_{\sigma}^\dagger q_{\tau} + \frac{1}{2} \sum_{pqrs\sigma\xi\theta} \langle p|V|q\rangle r_{\xi} s_{\theta} p_{\sigma}^\dagger q_{\tau}^\dagger r_{\xi}^\dagger s_{\theta}^\dagger,$$

with \hat{h} the core Hamiltonian, \hat{V} the Coulomb repulsion operator, \hat{N} the electron number operator, and ν the chemical potential. In this paper, we use p, q, r, s for generic orbitals, i, j, k, l for occupied orbitals, a, b, c, d for unoccupied orbitals, Greek letters $\sigma, \tau, \xi, \theta, \alpha,$ and β for spins. p_{σ}^\dagger is the creation operator of the spin orbital p_{σ} and q_{τ} is the annihilation operator of the spin orbital q_{τ}. We define that indices with α spins are always bigger than those with β spins.

$O^\dagger_n = \sum_{a_\sigma > b_\tau} X_{a_\sigma b_\tau}^{n} a_{\sigma}^\dagger b_{\tau}^\dagger + \sum_{i_\sigma > j_\tau} Y_{i_\sigma j_\tau}^{n} j_{\tau}^\dagger i_{\sigma}^\dagger,$

and δO is a trial two-electron removal de-excitation operator that can be

$$\delta O_n = b_{\tau} a_{\sigma} \quad \text{with} \quad a_{\sigma} > b_{\tau},$$

or

$$\delta O_n = i_{\sigma} j_{\tau} \quad \text{with} \quad i_{\sigma} > j_{\tau}.$$

For the first trial operator, when we evaluate with a HF ground state, the equation of motion gives

$$\sum_{c_\xi > d_\theta} \langle \Phi^N_{HF} | [b_{\tau} a_{\sigma}, [H, c_{\xi}^\dagger d_{\theta}^\dagger]] \Phi^N_{HF} | X_{c_\xi d_\theta}^{n} \rangle$$

$$+ \sum_{k_\zeta > l_{\omega}} \langle \Phi^N_{HF} | [b_{\tau} a_{\sigma}, [H, l_{\omega}^\dagger k_{\zeta}^\dagger]] \Phi^N_{HF} | Y_{l_{\omega} k_{\zeta}}^{n} \rangle = (E_n^{N+2} - E_0^N - 2\nu) \left(\sum_{c_\xi > d_\theta} \langle \Phi^N_{HF} | [b_{\tau} a_{\sigma}, c_{\xi}^\dagger d_{\theta}^\dagger]] \Phi^N_{HF} | X_{c_\xi d_\theta}^{n} \rangle \right)$$

$$+ \sum_{k_\zeta > l_{\omega}} \langle \Phi^N_{HF} | [b_{\tau} a_{\sigma}, l_{\omega}^\dagger k_{\zeta}^\dagger]] \Phi^N_{HF} | Y_{l_{\omega} k_{\zeta}}^{n} \rangle = (E_n^{N+2} - E_0^N - 2\nu) X_{a_{\sigma} b_{\tau}}^{n}.$$
For the second trial operator, the equation of motion gives

\[\sum_{\xi_j > \xi_0} \langle \Phi^N_{HF} | [i \sigma_j \xi_+, [H, c_j^\dagger d_j]] | \Phi^N_{HF} \rangle X^+_{\xi_j \xi_0} \]

\[+ \sum_{\xi_j > \xi_0} \langle \Phi^N_{HF} | [i \sigma_j \xi_+, [H, l^\dagger_j c_j]] | \Phi^N_{HF} \rangle Y^+_{\xi_j \xi_0} \]

\[= (E_{n+2}^N - E_0^N - 2\nu) \left(\sum_{\xi_j > \xi_0} \langle \Phi^N_{HF} | [i \sigma_j \xi_+, c_j^\dagger d_j] | \Phi^N_{HF} \rangle X^+_{\xi_j \xi_0} \right) \]

\[+ \sum_{\xi_j > \xi_0} \langle \Phi^N_{HF} | [i \sigma_j \xi_+, l^\dagger_j c_j] | \Phi^N_{HF} \rangle Y^+_{\xi_j \xi_0} \]

\[= -(E_{n+2}^N - E_0^N - 2\nu) Y^+_{\xi \xi_j} . \]

The above two equations can be cast into a matrix equation,

\[
\begin{bmatrix}
A & B \\
B^\dagger & C
\end{bmatrix}
\begin{bmatrix}
X^+ \\
Y^+
\end{bmatrix}
= \omega_n
\begin{bmatrix}
I & 0 \\
0 & -I
\end{bmatrix}
\begin{bmatrix}
X^+ \\
Y^+
\end{bmatrix},
\]

with

\[A_{aa,\sigma \epsilon c \xi \sigma_0} = \langle \Phi^N_{HF} | [b_{\sigma \epsilon} a_{\sigma \epsilon}, [H, c_j^\dagger d_j]] | \Phi^N_{HF} \rangle, \]

\[B_{aa,\sigma \epsilon c \xi \xi_0} = \langle \Phi^N_{HF} | [b_{\sigma \epsilon} a_{\sigma \epsilon}, [H, l^\dagger_j c_j]] | \Phi^N_{HF} \rangle, \]

\[C_{aa,\sigma \epsilon c \xi \xi_0} = \langle \Phi^N_{HF} | [i \sigma_j \xi_+, [H, l^\dagger_j c_j]] | \Phi^N_{HF} \rangle, \]

and

\[\omega_n = E_{n+2}^N - E_0^N - 2\nu. \]

Evaluation of the matrix elements gives

\[A_{aa,\sigma \epsilon c \xi \sigma_0} = \delta_{\sigma \epsilon c \xi} \delta_{\sigma \epsilon b_\sigma} (\epsilon_{a_\sigma} + \epsilon_{b_\sigma} - 2\nu) + \langle a_\sigma b_\sigma | c_j^\dagger d_j \rangle, \]

\[B_{aa,\sigma \epsilon c \xi \xi_0} = \langle a_\sigma b_\sigma | l^\dagger_j c_j \rangle, \]

\[C_{aa,\sigma \epsilon c \xi \xi_0} = -\delta_{\sigma \epsilon c \xi} \delta_{\epsilon_j b_\sigma} (\epsilon_{i_j} + \epsilon_{j_i} - 2\nu) + \langle i_j \sigma_j | l^\dagger_j c_j \rangle, \]

where \(\langle p_{\sigma} q_{\xi} | r_{\xi_0} \rangle \) is defined as

\[\langle p_{\sigma} q_{\xi} | r_{\xi_0} \rangle = \delta_{\sigma \xi} \delta_{\xi_0} \int dr_1 dr_2 \phi^\dagger_p(r_1) \phi^\dagger_q(r_2) \frac{1}{|r_1 - r_2|} \phi_i(r_1) \phi_j(r_2) \]

and \(\langle p_{\sigma} q_{\xi} | r_{\xi_0} \rangle \equiv \langle p_{\sigma} q_{\xi} | r_{\xi_0} \rangle - \langle p_{\sigma} q_{\xi} | r_{\xi_0} \rangle \).

The correlation energy can be expressed as

\[E_c = \sum_n \omega^+_n - \text{Tr} A = -\sum_n \omega^-_n - \text{Tr} C, \]

where \(\omega^+_n \)'s and \(\omega^-_n \)'s are positive and negative eigenvalues, respectively. In other words, the correlation energy can be obtained by diagonalizing the matrix and summing over eigenvalues.

Note that the excitation and de-excitation operators in Eqs. (3), (4), and (5) are all based on particle or hole pairs. In terms of spin combinations, there are three different types of pairs—\(\alpha \alpha, \beta \beta, \) and \(\alpha \beta \) pairs (\(\beta \alpha \) pairs are absent because of index restrictions). In Eq. (11), matrix elements with different types of excitation and de-excitation pairs are all zero, which naturally leads to the spin separated pp-RPA matrix

\[
\begin{bmatrix}
A_{aa,\alpha \alpha} & 0 & 0 & B_{aa,\alpha \beta} & 0 & 0 \\
0 & A_{\alpha \beta,\alpha \beta} & 0 & 0 & B_{\alpha \beta,\alpha \beta} & 0 \\
0 & 0 & A_{\beta \beta,\beta \beta} & 0 & 0 & B_{\beta \beta,\beta \beta} \\
0 & B_{aa,\alpha \beta} & 0 & 0 & C_{aa,\alpha \beta} & 0 \\
0 & 0 & B_{\alpha \beta,\alpha \beta} & 0 & 0 & C_{\alpha \beta,\alpha \beta} \\
0 & 0 & B_{\beta \beta,\beta \beta} & 0 & 0 & C_{\beta \beta,\beta \beta}
\end{bmatrix}.
\]

Then the eigenvalue problem can be decomposed into three independent eigenvalue problems

\[
\begin{bmatrix}
A_{\text{spin}} & B_{\text{spin}} \\
B_{\text{spin}}^\dagger & C_{\text{spin}}
\end{bmatrix}
\begin{bmatrix}
X_{\text{spin}} \\
Y_{\text{spin}}
\end{bmatrix}
= \omega_{\text{spin}}
\begin{bmatrix}
I & 0 \\
0 & -I
\end{bmatrix}
\begin{bmatrix}
X_{\text{spin}} \\
Y_{\text{spin}}
\end{bmatrix},
\]

with \(\text{spin} = (\alpha \alpha) \) or \((\alpha \beta, \alpha \beta) \) or \((\beta \beta, \beta \beta) \), and the matrix elements are

\[A_{aa,\alpha \alpha b_{\alpha \alpha},c_{\alpha \alpha}d_{\alpha \alpha}} = \delta_{\alpha \alpha b_{\alpha \alpha}} (\epsilon_{a_\alpha} + \epsilon_{b_\alpha} - 2\nu) + \langle a_\alpha b_\alpha | c_j^\dagger d_j \rangle, \]

\[A_{aa,\alpha \beta b_{\alpha \beta},c_{\alpha \beta}d_{\alpha \beta}} = \delta_{\alpha \beta b_{\alpha \beta}} (\epsilon_{a_\beta} + \epsilon_{b_\beta} - 2\nu) + \langle a_\beta b_\beta | c_j^\dagger d_j \rangle, \]

\[A_{aa,\beta \beta b_{\beta \beta},c_{\beta \beta}d_{\beta \beta}} = \delta_{\beta \beta b_{\beta \beta}} (\epsilon_{a_\beta} + \epsilon_{b_\beta} - 2\nu) + \langle a_\beta b_\beta | c_j^\dagger d_j \rangle, \]

\[B_{aa,\alpha \alpha b_{\alpha \alpha},c_{\alpha \alpha}d_{\alpha \alpha}} = \delta_{\alpha \alpha c_{\alpha \alpha}} \delta_{\alpha \alpha d_{\alpha \alpha}} (\epsilon_{a_\alpha} + \epsilon_{c_{\alpha \alpha}} + \epsilon_{d_{\alpha \alpha}} - 2\nu) + \langle a_\alpha c_{\alpha \alpha} d_{\alpha \alpha} | \rangle, \]

\[B_{aa,\alpha \beta b_{\alpha \beta},c_{\alpha \beta}d_{\alpha \beta}} = \delta_{\alpha \beta c_{\alpha \beta}} \delta_{\alpha \beta d_{\alpha \beta}} (\epsilon_{a_\beta} + \epsilon_{c_{\alpha \beta}} + \epsilon_{d_{\alpha \beta}} - 2\nu) + \langle a_\beta c_{\alpha \beta} d_{\alpha \beta} | \rangle, \]

\[B_{aa,\beta \beta b_{\beta \beta},c_{\beta \beta}d_{\beta \beta}} = \delta_{\beta \beta c_{\beta \beta}} \delta_{\beta \beta d_{\beta \beta}} (\epsilon_{a_\beta} + \epsilon_{c_{\beta \beta}} + \epsilon_{d_{\beta \beta}} - 2\nu) + \langle a_\beta c_{\beta \beta} d_{\beta \beta} | \rangle, \]

The final eigenvalue set is the union of the three matrices’ eigenvalue sets

\[\omega \equiv \omega_{aa,\alpha \alpha} \cup \omega_{aa,\alpha \beta,\alpha \beta} \cup \omega_{aa,\beta \beta,\beta \beta}, \]

and the trace of the original \(A \) (or \(C \)) matrix is the sum of the traces of the three smaller \(A_{\text{spin}} \) (or \(C_{\text{spin}} \)) matrices

\[\text{Tr} A = \sum_{\text{spin}} \text{Tr} A_{\text{spin}}, \]

\[\text{Tr} C = \sum_{\text{spin}} \text{Tr} C_{\text{spin}}. \]
Therefore, the correlation energy in Eq. (13) can be written as

\[
E_c = \sum_{\text{spin}} \left[\sum_{n_{\alpha \beta}} \frac{1}{2} \left(\omega_{n_{\alpha \beta}}^+ - \omega_{n_{\alpha \beta}}^- - \text{Tr} A_{\text{spin}} \right) \right] = \sum_{\text{spin}} \left[-\sum_{n_{\alpha \beta}} \omega_{n_{\alpha \beta}}^- - \text{Tr} C_{\text{spin}} \right].
\]

(17)

The spin separation can be implemented in both restricted and unrestricted cases. For restricted closed-shell singlet cases, the eigenvalue problem can be further simplified by using spin-adapted particle-particle and hole-hole pairs.

The \(\alpha\alpha\) pairs and \(\beta\beta\) pairs occur only as triplet pairs, while \(\alpha\beta\) pairs can combine into either singlet or triplet pairs.

\[
\text{Singlet} : \frac{1}{\sqrt{2}} \left(p_{\alpha}^\dagger q_{\beta} + q_{\alpha}^\dagger p_{\beta} \right), \quad \text{Triplet} : \frac{1}{\sqrt{2}} \left(p_{\alpha}^\dagger q_{\beta} - q_{\alpha}^\dagger p_{\beta} \right),
\]

(18a) (18b)

where \(p\) and \(q\) are generic orbitals that can be both occupied or both unoccupied. Singlet and triplet pair annihilations can be constructed in a similar manner. The spin adapted pp-RPA \(\alpha\beta\) matrix for the restricted case is obtained by dividing the \(\alpha\beta\) pairs into blocks according to their spin multiplicity

\[
\begin{bmatrix}
A_t & 0 & B_t & 0 \\
0 & A_t & 0 & B_t \\
B_t^\dagger & 0 & C_t & 0 \\
0 & B_t^\dagger & 0 & C_t
\end{bmatrix}
\]

and the decoupled eigenvalue problem is

\[
\begin{bmatrix}
A_{\text{mult}} & B_{\text{mult}} \\
B_{\text{mult}}^\dagger & C_{\text{mult}}
\end{bmatrix}
\begin{bmatrix}
X_{\text{mult}} \\
Y_{\text{mult}}
\end{bmatrix}
= \omega_{\text{mult}}
\begin{bmatrix}
I & 0 \\
0 & -I
\end{bmatrix}
\begin{bmatrix}
X_{\text{mult}} \\
Y_{\text{mult}}
\end{bmatrix},
\]

(19)

where the multiplicity \(\text{mult}\) is either singlet \((s)\) or triplet \((t)\). The elements in the triplet matrix are

\[
\begin{align*}
[A_t]_{ab,cd} &= \delta_{ac}\delta_{bd}(\epsilon_a + \epsilon_b - 2\nu) + \langle ab|cd \rangle, \\
[B_t]_{ab,ij} &= \langle ab|ij \rangle, \\
[C_t]_{ij,kl} &= -\delta_{ik}\delta_{jl}(\epsilon_i + \epsilon_j - 2\nu) + \langle ij|kl \rangle,
\end{align*}
\]

with the restriction that \(a > b, c > d, i > j,\) and \(k > l\). This triplet eigenvalue problem is the same as the \(\alpha\alpha\) and \(\beta\beta\) cases and therefore gives the same eigenvalue set

\[
\omega_t = \omega_{\alpha\alpha,\alpha\alpha} = \omega_{\beta\beta,\beta\beta},
\]

(20a)

\[
\text{Tr} A_t = \text{Tr} A_{\alpha\alpha,\alpha\alpha} = \text{Tr} A_{\beta\beta,\beta\beta}.
\]

(20b)

The elements in the singlet matrix are

\[
\begin{align*}
[A_s]_{ab,cd} &= \delta_{ac}\delta_{bd}(\epsilon_a + \epsilon_b - 2\nu) + \frac{1}{\sqrt{(1 + \delta_{ab})(1 + \delta_{cd})}} \times ((ab|cd) + (ab|dc)) \\
[B_s]_{ab,ij} &= \frac{1}{\sqrt{(1 + \delta_{ab})(1 + \delta_{ij})}}((ab|ij) + (ab|ji)), \\
[C_s]_{ij,kl} &= -\delta_{ik}\delta_{jl}(\epsilon_i + \epsilon_j - 2\nu) + \frac{1}{\sqrt{(1 + \delta_{ij})(1 + \delta_{kl})}} \times ((ij|kl) + (ij|lk)),
\end{align*}
\]

(21a) (21b) (21c)

with the restriction that \(a \geq b, c \geq d, i \geq j,\) and \(k \geq l\).

The linear combination to generate spin-adapted pairs is a unitary transformation. Consequently, the eigenvalues and the traces do not change—the \(\alpha\beta\) eigenvalue set is the union of the singlet and triplet eigenvalue sets

\[
\omega_{\alpha\beta,\alpha\beta} \equiv \omega_t \cup \omega_s,
\]

(22)

and the trace of \(A_{\alpha\beta,\alpha\beta}\) (or \(C_{\alpha\beta,\alpha\beta}\)) matrix equals the sum of the traces of the singlet \(A_s\) (or \(C_s\)) and triplet \(A_t\) (or \(C_t\)),

\[
\text{Tr} A_{\alpha\beta,\alpha\beta} = \text{Tr} A_s + \text{Tr} A_t,
\]

(23a)

\[
\text{Tr} C_{\alpha\beta,\alpha\beta} = \text{Tr} C_s + \text{Tr} C_t.
\]

(23b)

Therefore, the correlation energy in Eqs. (13) and (17) can further be expressed as

\[
E_c = 3 \left(\sum_n \omega_{i,n}^+ - \text{Tr} A_i \right) + \sum_n \omega_{i,n}^+ - \text{Tr} A_i
\]

\[
= 3 \left(\sum_n \omega_{i,n}^+ - \text{Tr} C_i \right) - \sum_n \omega_{i,n}^- - \text{Tr} C_i.
\]

(24)

In Secs. III and IV, Eqs. (17) and (24) are used to compute correlation energies for unrestricted and restricted cases, respectively. With the spin separation, the largest matrices are about half the dimension of the original matrices, thus the memory usage and the computational time are roughly reduced to 1/4 and 1/8 compared to the unoptimized algorithm, respectively. For closed-shell singlet systems, with the spin adaptation, the largest matrices are only about a quarter the dimension of the original matrices, therefore, the computational costs are further reduced to 1/16 in memory and 1/64 in time as of the unoptimized algorithm. However, even with the lowered factor, the computational complexity through direct diagonalization is still \(O(N^6)\), with \(N\) either number of virtual orbitals or number of occupied orbitals, whichever dominates.

III. COMPUTATIONAL DETAILS

We have implemented the pp-RPA with spin separation and spin adaptation in QM4D.35 For pp-RPA calculations, HF or Kohn-Sham DFT reference states were computed using the QM4D package. The PBE34 reference was used for the G2/97 enthalpies of formation database and the DBH24 reaction barrier database. Both the PBE and HF references were
tested and compared for the nonbonded interaction databases. Basis set convergence was tested along the cc-pVXZ series, \(X = D, T, Q, 5 \), for selected systems in G2/97, and with the aug-cc-pVXZ series, \(X = D, T, Q \), for selected reaction barriers. The basis set convergence of pp-RPA for non-bonded interactions was assessed with aug-cc-pVXZ series, \(X = D, T, Q \), for selected reaction barriers. The basis set convergence of pp-RPA for non-bonded interactions was assessed with aug-cc-pVXZ series, \(X = D, T, Q \) (spherical harmonic atomic orbitals) in a locally modified version of CFOUR. After balancing the accuracy and the computational cost, calculations for G2/97, DBH24, and nonbonded interactions adopted the cc-pVTZ, aug-cc-pVTZ, and aug-cc-pVDZ basis sets, respectively. The QM4D program uses Cartesian atomic orbitals and removes basis functions with angular momentum higher than \(\ell \). For enthalpies of formation and reaction barriers tests, we used cc-pVXZ-RI auxiliary basis sets (basis functions with angular momentum higher than \(\ell \) also truncated) in the post-KS pp-RPA to facilitate the atomic orbital to molecular orbital two-electron integral transformation. The ph-RPA calculations were carried out in the same way, except that no RI auxiliary basis sets were used. Geometries for the G2/97 benchmark set are taken from Ref. 36, which were optimized using the MP2(full)/6-31G* method. Geometries for the DBH24 set are taken from Ref. 28. Geometries for the HB6/04, CT7/04, DI6/04, and W19/04 nonbonded interaction sets are taken from Ref. 30.

IV. RESULTS AND DISCUSSIONS

A. G2/97 enthalpies of formation

1. Basis set convergence test

We choose HCN and \(\text{H}_2\text{O} \) to assess the basis set convergence of total and atomization energies (Figure 2). For both molecules and both types of RPA, the total energy converges slowly and shows as large as \(\approx 10 \text{ kcal/mol} \) and \(20 \text{ kcal/mol} \) differences between the cc-pVQZ and the cc-pV5Z basis sets for the pp-RPA and ph-RPA, respectively. By contrast, due to systematic error cancellation, the atomization energy shows about or less than \(5 \text{ kcal/mol} \) differences between the cc-pVTZ and the cc-pVQZ basis sets. Considering the balance of accuracy and large computational cost, we adopted the cc-pVTZ basis set for benchmarking enthalpies of formation.

2. Results

Enthalpies of formation allow for a direct comparison with experimental results and are therefore often used to benchmark electronic structure methods. The closely related zero-point-energy-free atomization energies are somewhat more straightforward to compare to high-level computations and it is therefore customary to report both. In the present work, we investigate the performance of the pp- and ph-RPA for the atomization energies and enthalpies of formation for the G2/97 database (see Table VI in the supplementary material for the detailed data). The smallest molecule of G2/97 is \(\text{H}_2 \) and the largest in terms of atoms and number of electrons, are \(\text{C}_6\text{H}_{10} \) and \(\text{SiCl}_4 \), respectively.

Among the whole set, the maximum error (MaxE) for the pp-RPA is \(-31.1 \text{ kcal/mol} \) (\(\text{C}_2\text{F}_4 \)), which is half of that for the ph-RPA (63.2 kcal/mol, \(\text{SiF}_4 \)). The mean signed error (MSE) for the pp-RPA is \(-1.9 \text{ kcal/mol} \) which is much smaller than that for the ph-RPA (21.7 kcal/mol). The mean unsigned error (MUE) is 8.3 kcal/mol and 21.7 kcal/mol for the pp-RPA and ph-RPA. These indicate that the error for the pp-RPA is fluctuating around the reference values while the ph-RPA systematically overestimates enthalpies of formation. This behavior also emerges when we plot the signed error for both RPAs with respect to the number of atoms in a molecule (Figure 3). In contrast to the ph-RPA, the pp-RPA enthalpies of formation show no systematic drift with respect to the number of atoms. The systematic underbinding of the ph-RPA is well known, although previous conclusions were based on data limited to small molecules. This error has been ascribed to the ph-RPA’s insufficiency to describe the short-range correlation, which may be important when the number of electron pairs changes. Since the number of atoms in a molecule is roughly correlated to the number of electron pairs formed, the increasing error in Figure 3 is in agreement with this argument.

The G2/97 database is often divided into the G2-1 (small molecules) and G2-2 (large molecules) subsets. The G2-2
ceeds 20 kcal/mol. When dividing the G2/97 database into aromatic cyclic systems, showing that the pp-RPA is good at describing non-cyclic organic subsets (hydrocarbons and substituted hydrocarbons), RPA overestimates them by 35.9 kcal/mol. For the two enthalpies of formation by 14.6 kcal/mol while the ph-RPA has a nearly constant trend with respect to the number of atoms, while the ph-RPA has errors within about 0-60 kcal/mol and growing with respect to the number of atoms.

The pp-RPA performs significantly better than the ph-RPA for the set (MUE = 6.8 kcal/mol). Neither RPA performs well for non-hydrogen systems: the pp-RPA underestimates the enthalpies of formation by 14.6 kcal/mol while the ph-RPA overestimates them by 35.9 kcal/mol. For the two organic subsets (hydrocarbons and substituted hydrocarbons), the pp-RPA performs significantly better than the ph-RPA (MUE = 8 and 27 kcal/mol, respectively). Detailed inspections show that the pp-RPA is good at describing non-cyclic organic compounds. For (strained) cyclic compounds such as methylene cyclopropane, bicyclobutane, and spiropentane, the error reaches over 10 kcal/mol. For aromatic cyclic systems, the ph-RPA overestimates the enthalpies of formation by 29.2 kcal/mol and growing with respect to the number of atoms.

In the hydrocarbon reactions, the enthalpy difference between allene and propyne, has been used to assess the reliability of density functionals for determining the poly-yne vs. cumulene stability, a very tricky energy difference in general. Even though the sign is correct for both RPAs (in contrast to typical density functional approximations such as B3LYP), the pp-RPA has a large error (2.8 kcal/mol, >200%), overly stabilizing the triple bond of propyne compared to the double bonds in allene. However, the ph-RPA is not affected by such a problem, in agreement with the analysis of the G2/97 set with respect to the bond types. A similar preference for the electron localized geometry is the isomerization of 2-butyne to the more stable, conjugated butadiene. In contrast to these reactions involving a changing degree of electron localization, the pp-RPA has a large error (2.8 kcal/mol, >200%), whereas the ph-RPA is not affected by such a problem, in agreement with the analysis of the G2/97 set with respect to the bond types. A similar preference for the electron localized geometry is the isomerization of 2-butyne to the more stable, conjugated butadiene. In contrast to these reactions involving a changing degree of electron localization.
TABLE II. Reaction energies (in kcal/mol) between molecules taken from the G2/97 database. Basis set: cc-pVTZ. Numbers in the parenthesis indicate the error.

<table>
<thead>
<tr>
<th>Type</th>
<th>Reaction</th>
<th>Benchmark</th>
<th>pp-RPA</th>
<th>ph-RPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon</td>
<td>CH₃CCH → CH₂CCH₂</td>
<td>1.3</td>
<td>4.1(2.8)</td>
<td>1.8(0.5)</td>
</tr>
<tr>
<td>Reactions</td>
<td>CH₃CCCH → CH₂CHCH₂CH₂</td>
<td>-8.5</td>
<td>-3.7(4.8)</td>
<td>-5.4(3.1)</td>
</tr>
<tr>
<td></td>
<td>CH₂CH₂CH₂CH₄ → CH₂CH(CH₂)CH₃</td>
<td>-2.1</td>
<td>-2.5(-0.4)</td>
<td>-1.7(0.4)</td>
</tr>
<tr>
<td></td>
<td>C₂H₆ + CH₄ → 2C₂H₆</td>
<td>2.7</td>
<td>3.3(0.6)</td>
<td>2.3(-0.4)</td>
</tr>
<tr>
<td></td>
<td>C₂H₁₀ + 2CH₄ → 3C₂H₆</td>
<td>5.5</td>
<td>7.1(1.6)</td>
<td>5.0(-0.5)</td>
</tr>
<tr>
<td>Substituted</td>
<td>C₂H₅O(oxirane) → CH₃CHO</td>
<td>-27.1</td>
<td>-24.5(2.6)</td>
<td>-24.9(2.2)</td>
</tr>
<tr>
<td>Hydrocarbon</td>
<td>C₂H₅OH → CH₂OCH₃</td>
<td>12.2</td>
<td>12.6(0.4)</td>
<td>11.8(-0.4)</td>
</tr>
<tr>
<td>Isomerization</td>
<td>C₂H₅SH → CH₃SCH₃</td>
<td>2.2</td>
<td>2.2(0.0)</td>
<td>3.4(1.2)</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₂CHOH → C₂H₅OCH₃</td>
<td>13.5</td>
<td>13.8(0.3)</td>
<td>12.5(-1.0)</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₂NH → CH₂CH₂NH₂</td>
<td>-6.9</td>
<td>-8.3(-1.4)</td>
<td>-8.0(-1.1)</td>
</tr>
<tr>
<td>Substitution</td>
<td>NCCN + C₂H₆ → 2CH₂CN</td>
<td>-17.2</td>
<td>-15.9(1.3)</td>
<td>-13.8(3.4)</td>
</tr>
<tr>
<td>Reactions</td>
<td>H₂NNH₂ + C₂H₆ → 2CH₂NH₂</td>
<td>-13.7</td>
<td>-12.8(0.9)</td>
<td>-11.2(2.5)</td>
</tr>
<tr>
<td></td>
<td>Cl₂ + C₂H₆ → 2CH₂Cl</td>
<td>-19.1</td>
<td>-19.6(-0.5)</td>
<td>-15.2(3.9)</td>
</tr>
<tr>
<td></td>
<td>Si₂H₆ + C₂H₆ → 2CH₂SiH₃</td>
<td>-13</td>
<td>-10.7(2.3)</td>
<td>-7.8(5.2)</td>
</tr>
<tr>
<td></td>
<td>HOOH + C₂H₆ → 2CH₃OH</td>
<td>-43.4</td>
<td>-44.3(-0.9)</td>
<td>-37.4(6.0)</td>
</tr>
<tr>
<td>Addition</td>
<td>HCl + C₂H₄ → C₂H₅Cl</td>
<td>-17.2</td>
<td>-25.0(-7.8)</td>
<td>-19.1(-1.9)</td>
</tr>
<tr>
<td>Reactions</td>
<td>HCN + C₂H₅ → CH₃CHCN</td>
<td>-42.5</td>
<td>-47.4(-4.9)</td>
<td>-43.8(-1.3)</td>
</tr>
<tr>
<td></td>
<td>HF + C₂H₅ → CH₃CHF</td>
<td>-22.3</td>
<td>-26.7(-4.4)</td>
<td>-26.6(-4.3)</td>
</tr>
<tr>
<td></td>
<td>HCl + C₂H₅ → CH₂CHCl</td>
<td>-23.2</td>
<td>-31.6(-8.4)</td>
<td>-28.2(-5.0)</td>
</tr>
</tbody>
</table>

TABLE III. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) (in kcal/mol) of reaction energies calculated by pp-RPA and ph-RPA using the cc-pVTZ basis set.

<table>
<thead>
<tr>
<th>Type</th>
<th>MSE</th>
<th>MUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactions</td>
<td>1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Substituted</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>hydrocarbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isomerizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution</td>
<td>0.6</td>
<td>4.2</td>
</tr>
<tr>
<td>reactions</td>
<td>-6.4</td>
<td>-3.1</td>
</tr>
<tr>
<td>Addition</td>
<td>-0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>All</td>
<td>-6.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

delocalization, both RPAs perform excellently for the isomerization energy of butane and the isodesmic reaction energies for n-alkanes. For both types of reactions typical density functionals fail dramatically, most likely because of an inaccurate treatment of weak interactions.42–45

B. DBH24 reaction barriers

1. Basis set convergence test

Figure 4 shows the basis set dependence of the barrier heights of H + OH → O + H₂ and HCN → HNC along the aug-cc-pVXZ basis sets series, with X = D, T, Q. For H + OH → O + H₂, both RPAs converge well with nearly

![FIG. 4. Basis set convergence for forward and backward reactions of H + OH → O + H₂ and HCN → HNC. The pp-RPA converges well for both cases, while the ph-RPA still has rather large differences between aug-cc-pVTZ and aug-cc-pVQZ.](a) (b)
This is mainly due to the H+ subset, which includes three heavy-atom transfer reactions.

Among the four subsets in DBH24, the pp-RPA has the largest mean unsigned error (5.56 kcal/mol) for the HATBH6 reaction, in which the pp-RPA overestimates the forward barrier by 5.21 kcal/mol and underestimates the backward barrier by 16.82 kcal/mol. The reason is twofold: first, as is shown before, the pp-RPA has difficulties predicting enthalpies of formation for some compounds with double bonds and triple bonds, i.e., the reactants and products are not well described with a 22 kcal/mol error for the reaction energy. Second, the pp-RPA does not describe the spin-unpolarized bond-stretching of double and triple bonds well, leading to a large error for the transition state. The NSBH6 subset includes three nucleophilic substitution reactions, and both RPAs perform well except for the OH+ + CH3F → HOCH3 + F− reaction, which might suffer from delocalization errors in the PBE reference determinant. For UABH6, which includes three unimolecular and association reactions, both RPAs perform well for the OH+ + CH4 → CH3 + H2O reaction, where they both underestimate the energy of the transition state. In conclusion, despite some tricky cases, both the pp-RPA and ph-RPA generally provide reliable reaction barriers.

2. Results

Benchmark values in the DBH24 reaction barrier test set are best estimates either from experiments or highly accurate theoretical methods. The overall performance for the DBH24 database is very similar for the pp-RPA and the ph-RPA (see Tables IV and V): the pp-RPA has a slightly smaller mean signed error (−1.11 kcal/mol) than ph-RPA (−1.65 kcal/mol), while the ph-RPA has a slightly smaller mean unsigned error (2.48 kcal/mol vs. 3.19 kcal/mol). Among the four subsets in DBH24, the pp-RPA has the largest mean unsigned error (5.56 kcal/mol) for the HATBH6 subset, which includes three heavy-atom transfer reactions. This is mainly due to the H + N2O → OH + N2 reaction, in which the pp-RPA overestimates the forward barrier by 5.21 kcal/mol and underestimates the backward barrier by 16.82 kcal/mol. The reason is twofold: first, as is shown before, the pp-RPA has difficulties predicting enthalpies of formation for some compounds with double bonds and triple bonds, i.e., the reactants and products are not well described with a 22 kcal/mol error for the reaction energy. Second, the pp-RPA does not describe the spin-unpolarized bond-stretching of double and triple bonds well, leading to a large error for the transition state. The NSBH6 subset includes three nucleophilic substitution reactions, and both RPAs perform well except for the OH+ + CH3F → HOCH3 + F− reaction, which might suffer from delocalization errors in the PBE reference determinant. For UABH6, which includes three unimolecular and association reactions, both RPAs perform well. For HTBH6, which consists of three hydrogen transfer reactions, both methods give accurate reaction barriers, except for OH+ + CH4 → CH3 + H2O, where they both underestimate the energy of the transition state. In conclusion, despite some tricky cases, both the pp-RPA and ph-RPA generally provide reliable reaction barriers.

TABLE IV. DBH24 reaction barriers (in kcal/mol) calculated by pp-RPA and ph-RPA using the aug-cc-pVTZ basis set. Numbers in the parenthesis indicate the error.

<table>
<thead>
<tr>
<th>Database</th>
<th>Reaction</th>
<th>Benchmark</th>
<th>pp-RPA</th>
<th>ph-RPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HATTBH6</td>
<td>H + N2O → OH + N2</td>
<td>17.13</td>
<td>22.34(5.21)</td>
<td>17.50(0.37)</td>
</tr>
<tr>
<td></td>
<td>H + CIH → HCl + H</td>
<td>82.47</td>
<td>65.65(−16.82)</td>
<td>75.49(−6.98)</td>
</tr>
<tr>
<td></td>
<td>CH3 + FCl → CH3F + Cl</td>
<td>18.00</td>
<td>21.29(3.29)</td>
<td>18.78(0.78)</td>
</tr>
<tr>
<td></td>
<td>CH3 + Cl → CH3Cl</td>
<td>6.75</td>
<td>3.04(−3.71)</td>
<td>0.16(−6.59)</td>
</tr>
<tr>
<td></td>
<td>OH+ + CH2F → H2O, where they both underestimate the energy of the transition state. In conclusion, despite some tricky cases, both the pp-RPA and ph-RPA generally provide reliable reaction barriers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database</th>
<th>Reaction</th>
<th>Benchmark</th>
<th>pp-RPA</th>
<th>ph-RPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBH6</td>
<td>Cl− ··· CH3Cl → CICH3 ··· Cl−</td>
<td>13.41</td>
<td>12.00(−1.41)</td>
<td>10.87(−2.54)</td>
</tr>
<tr>
<td></td>
<td>F− ··· CH3Cl → FCH3 ··· Cl−</td>
<td>3.44</td>
<td>2.11(−1.33)</td>
<td>1.38(−2.06)</td>
</tr>
<tr>
<td></td>
<td>OH− + CH3F → HOCH3 + F−</td>
<td>−2.44</td>
<td>−6.78(−4.32)</td>
<td>−5.89(−3.45)</td>
</tr>
<tr>
<td></td>
<td>−17.66</td>
<td>13.79(−3.87)</td>
<td>13.20(−4.46)</td>
<td></td>
</tr>
<tr>
<td>UABH6</td>
<td>H + N2 → HN2</td>
<td>14.36</td>
<td>17.33(2.97)</td>
<td>14.23(−0.13)</td>
</tr>
<tr>
<td></td>
<td>H + C2H4 → CH3CH2</td>
<td>10.61</td>
<td>10.34(−0.27)</td>
<td>10.54(−0.07)</td>
</tr>
<tr>
<td></td>
<td>HCN → HNC</td>
<td>1.72</td>
<td>3.95(2.23)</td>
<td>2.31(0.59)</td>
</tr>
<tr>
<td></td>
<td>HCNO + CH4 → CH3 + H2O</td>
<td>41.75</td>
<td>43.49(1.74)</td>
<td>43.20(1.45)</td>
</tr>
<tr>
<td></td>
<td>H + OH → O + H2</td>
<td>48.07</td>
<td>49.24(1.17)</td>
<td>50.07(2.00)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>32.82</td>
<td>32.55(−0.27)</td>
<td>35.50(2.68)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>6.7</td>
<td>0.4(−6.3)</td>
<td>4.2(−2.5)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>19.6</td>
<td>16.6(−3.0)</td>
<td>11.3(−8.3)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>10.7</td>
<td>13.9(3.2)</td>
<td>7.3(−3.4)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>13.1</td>
<td>11.4(−1.7)</td>
<td>12.7(−0.4)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>3.6</td>
<td>5.5(1.9)</td>
<td>2.8(−0.8)</td>
</tr>
<tr>
<td></td>
<td>H + H2S → H2 + HS</td>
<td>17.3</td>
<td>14.4(−2.9)</td>
<td>18.6(1.3)</td>
</tr>
</tbody>
</table>

TABLE V. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) in kcal/mol of DBH24 reaction barriers and its four subsets calculated by pp-RPA and ph-RPA.

<table>
<thead>
<tr>
<th>Database</th>
<th>MSE</th>
<th>MUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HATTBH6</td>
<td>−1.64</td>
<td>2.30</td>
</tr>
<tr>
<td>NSBH6</td>
<td>−2.60</td>
<td>3.00</td>
</tr>
<tr>
<td>UABH6</td>
<td>1.26</td>
<td>1.09</td>
</tr>
<tr>
<td>HTBH6</td>
<td>−1.47</td>
<td>2.37</td>
</tr>
<tr>
<td>DBH24</td>
<td>−1.11</td>
<td>1.65</td>
</tr>
</tbody>
</table>
FIG. 5. Basis set convergence for nonbonded interactions calculated with pp-RPA. Different basis sets give similar interaction energies.

C. HB6/04, CT7/04, DI6/04, and WI9/04 nonbonded interaction

1. Basis set convergence test

To assess the basis set convergence of the pp-RPA, we chose a strong hydrogen bonded system (HF − HF), a charge-transfer complex (H2O − ClF), a dipole-dipole, and a “pure” van der Waals dimer (HCl − HCl and CH4 − Ne, respectively). Overall, the interaction energies are similar with different basis (aug-cc-pVXZ with X = D, T, Q), although in some cases the interaction energy does not change monotonically with respect to the basis (see Figure 5). Considering the high computational cost, we adopt the aug-cc-pVDZ basis set and correct for the basis set superposition error (BSSE) according to the Boys-Bernardi counterpoise correction 46 (see the supplementary material37 for results without BSSE correction). Table VI confirms that counterpoise corrected aug-cc-pVDZ results overall agree well with the aug-cc-pVQZ results and therefore we expect them to reflect the correct relative performance of the ph- and pp-RPA.

2. Results

Results for nonbonded interactions are shown in Table VI. Both HF reference and PBE reference are investigated for the two RPAs. Overall, with the aug-cc-pVDZ basis, the HF reference gives slightly better results than the PBE reference for both RPAs. As the work of Cencek and Szalewicz47 nicely demonstrated, this behavior is a direct consequence of the exponential, instead of 1/r decay of the exchange-correlation potential of semi-local density functionals. Therefore, the weak electron density regions are very poorly described, which in turn is considerably more problematic for functionals that depend on the virtual orbitals than pure density functionals. After BSSE correction, the pp-RPA gives a slightly smaller deviation than the ph-RPA. The two RPAs perform similarly for all four types of interactions, with the pp-RPA using the Hartree-Fock determinant giving the best agreement with the benchmark data. Therefore, it can be concluded that the pp-RPA describes weak interactions equally well as the more popular ph-RPA. This may be due to the exact second-order energy expansion of the ladder diagram,20 which is commonly believed to dominate the van der Waals interaction. The relationship between the two types of RPA in describing the asymptotic van der Waals awaits further investigation.

V. CONCLUSIONS

We have implemented the spin separation and spin adaptation for the pp-RPA, which factors the pp-RPA eigenvalue problem into several smaller ones. This simplification reduces the computational cost, allowing thorough benchmark tests on the G2/97 enthalpies of formation, DBH24 reaction barriers, and four nonbonded interaction databases. Our results demonstrate that the pp-RPA performs significantly better than the ph-RPA for enthalpies of formation: in contrast to the increasing error of the ph-RPA with the number of atoms in a molecule, the pp-RPA has a nearly constant error. For reaction enthalpies, barriers heights and nonbonded interactions, the pp-RPA and ph-RPA perform essentially equally well. These benchmark tests indicate that the pp-RPA is a promising method even for larger systems, although systems with multiple bonds tend to be relatively problematic. This

TABLE VI. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) (in kcal/mol) of HB6/04, CT7/04, DI6/04, and WI9/04 nonbonded interaction test sets calculated with pp-RPA and ph-RPA. If not stated otherwise, the aug-cc-pVDZ basis set has been applied and except for aug-cc-pVQZ the basis set superposition error is corrected for.

<table>
<thead>
<tr>
<th>Database</th>
<th>ph-RPA</th>
<th>pp-RPA</th>
<th>HF/aug-cc-pVQZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HF</td>
<td>PBE</td>
<td>MSE</td>
</tr>
<tr>
<td>HB6/04</td>
<td>1.14</td>
<td>1.14</td>
<td>1.82</td>
</tr>
<tr>
<td>CT7/04</td>
<td>1.70</td>
<td>1.70</td>
<td>4.15</td>
</tr>
<tr>
<td>DI6/04</td>
<td>1.29</td>
<td>1.29</td>
<td>1.57</td>
</tr>
<tr>
<td>WI9/04</td>
<td>0.32</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>Total</td>
<td>1.05</td>
<td>1.05</td>
<td>1.86</td>
</tr>
</tbody>
</table>

*Calculations were performed with spherical harmonic basis functions. BSSEs were not corrected. Results reported are based on selected systems that are within computational capability. See Tables VII–X in the supplementary material37 for detailed data.
shortcoming might be overcome in further development: the general success of the pp-RPA suggests that the pairing interaction in conjunction with the adiabatic connection formalism forms a promising framework for developing new density functionals.

ACKNOWLEDGMENTS

Support from the Office of Naval Research (ONR) (N00014-09-0576) and the National Science Foundation (NSF) (CHE-09-11119) (W.Y.) is appreciated. Y. Yang thanks the Paul M. Gross fellowship from Duke University. H.v.A thanks FWO-Flanders (Scientific Research Fund Flanders) for funding. S.N.S acknowledges the Swiss National Science Foundation (NSF(CH)) fellowship PBELP2-143559.

31D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
33An in-house program for QM/MM simulations (http://www.qm4d.info).
36See http://www.cse.anl.gov/OldCHMwebsiteContent/compmat/g2-97.htm for G2/97.
37See supplementary material at http://dx.doi.org/10.1063/1.4828728 for detailed data.